Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.

نویسندگان

  • Lijun Liu
  • Chunyang Wei
  • Yuyan Guo
  • William J Rogers
  • M Sam Mannan
چکیده

Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isothermal decomposition of hydroxylamine and hydroxylamine nitrate in aqueous solutions in the temperature range 80-160 degrees C.

Hydroxylamine (HA) and hydroxylamine nitrate (HAN) have been involved independently in several tragic accidents, which incurred numerous fatalities and injuries. Following these incidents, adiabatic calorimetry and computational chemistry research was conducted on those compounds, suggesting potential reaction pathways of their decomposition, but the mechanism of their unstable behavior, still ...

متن کامل

Modeling and Simulation a Catalytic Fixed Bed Reactor to Produce Ethyl Benzene from Ethanol

Ethyl benzene used increasingly each year is the raw material of producing styrene monomer. This substanceis produced from benzene alkylation with ethylene or ethanol, depending on the availability and cost of rawmaterials. In this study benzene alkylation in the presence of ethanol in a catalytic fixed bed reactor inthree states of isotherm, adiabatic and non-isotherm-non-adiabatic is mathemat...

متن کامل

Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC)....

متن کامل

Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate

The process of nitrate reduction via nitrite controls the fate and bioavailability of mineral nitrogen within ecosystems; i.e., whether it is retained as ammonium (ammonification) or lost as nitrous oxide or dinitrogen (denitrification). Here, we present experimental evidence for a novel pathway of microbial nitrate reduction, the reverse hydroxylamine:ubiquinone reductase module (reverse-HURM)...

متن کامل

Thermal decomposition hazard evaluation of hydroxylamine nitrate.

Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family and it is a liquid propellant when combined with alkylammonium nitrate fuel in an aqueous solution. Low concentrations of HAN are used primarily in the nuclear industry as a reductant in nuclear material processing and for decontamination of equipment. Also, HAN has been involved in several incidents because of its i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 162 2-3  شماره 

صفحات  -

تاریخ انتشار 2009